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This paper investigates the convergence condition for the polynomial approxima-
tion of rational functions and rational curves. The main result, based on a hybrid
expression of rational functions (or curves), is that two-point Hermite interpolation
converges if all eigenvalue moduli of a certain r_r matrix are less than 2, where r
is the degree of the rational function (or curve), and where the elements of the
matrix are expressions involving only the denominator polynomial coefficients
(weights) of the rational function (or curve). As a corollary for the special case of
r=1, a necessary and sufficient condition for convergence is also obtained which
only involves the roots of the denominator of the rational function and which is
shown to be superior to the condition obtained by the traditional remainder theory
for polynomial interpolation. For the low degree cases (r=1, 2, and 3), concrete
conditions are derived. Application to rational Bernstein�Be� zier curves is discussed.
� 1997 Academic Press

1. INTRODUCTION

A degree r rational Bernstein polynomial is given by the equation

R(t)=
P(t)
w(t)

=
�r

i=0 wiRiBr
i (t)

�r
i=0 wiBr

i (t)
, 0�t�1, (1)
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where Ri # R are real numbers, wi # R are the weights, and Br
i (t)=

( r
i) ti(1&t)r&i denote the Bernstein basis polynomials. Throughout this

paper, we will use terms rational Bernstein polynomial and rational function
interchangeably. Although we assume Ri and wi are real, the general results
also hold for complex numbers.

Any degree r Bernstein polynomial w(t) can be expressed exactly as a
degree r+1 Bernstein polynomial,

w(t)= :
r+1

i=0

ŵi Br+1
i (t), (2)

where

ŵi=\1&
i

r+1+ wi+
i

r+1
wi&1. (3)

This is called degree elevation (see [7] for details).
Denote by

hm, n(t)= :
m+n&1

i=0

hm, n
i Bm+n&1

i (t) (4)

the degree m+n&1 Bernstein polynomial which satisfies

d jhm, n(0)
dt j =

d jR(0)
dt j , j=0, 1, ..., m&1,

(5)
d jhm, n(1)

dt j =
d jR(1)

dt j , j=0, 1, ..., n&1.

We will say that hm, n(t) is the h(m, n) polynomial approximation to R(t).
The approximation domain is 0�t�1 unless stated otherwise.

In [5], another polynomial approximation technique, using so-called
hybrid polynomials, is introduced. A hybrid polynomial H� m, n(t) is a degree
m+n Bernstein polynomial with one coefficient Vm, n(t) being a degree r
rational function. The hybrid polynomial is equivalent to the original
rational function R(t),

H� m, n(t)#R(t)= :
m+n

i=0, i{m

H m, n
i Bm+n

i (t)+V m, n(t) Bm+n
m (t), 0�t�1, (6)

where

Vm, n(t)=
�r

i=0 wiV m, n
i Br

i (t)

�r
i=0 wiBr

i (t)
. (7)
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Hybrid polynomials can be used to compute a polynomial approximation
to rational functions. If we replace Vm, n(t) with a constant H m, n

m such that
Min0�i�r V m, n

i �H m, n
m �Max0�i�r V m, n

i , then the Bernstein polynomial

Hm, n(t)= :
m+n

i=0

H m, n
i Bm+n

i (t) (8)

gives a polynomial approximation to rational function R(t). We call Hm, n(t)
the H(m, n) polynomial approximation to R(t). An advantage in applying
hybrid polynomials to polynomial approximation is that error bounding
becomes trivial. For example, if we choose H m, n

m = 1
2 (Min0�i�r V m, n

i +
Max0�i�r V m, n

i ) and wi�0, then the error R(t)&H m, n(t) is simply bounded
by 1

2 (Max0�i�r V m, n
i &Min0�i�r V m, n

i ) Bm+n
m (t).

This paper investigates the conditions under which h(m, n) and
H(m, n) converge to R(t) as limn � �(m�n)=:(�0). The two cases of
greatest interest are n=0 or m=0 (Taylor interpolation) and m=n (two-
point Hermite interpolation).

Conventionally, such analyses proceed by examining the roots of w(t),
and convergence is assured if all roots lie outside a certain region in
the complex plane. This sufficient convergence condition is derived in
Section 2.

Section 3 develops the main results of the paper. Section 3.1 derives the
relationship between polynomials hm, n(t) and H m, n(t) and gives the error
terms for approximations h(m, n) and H(m, n). These error terms serve
as the basis for the convergence conditions. Section 3.2 derives a recursive
formula to compute the coefficients of Vm, n(t) which is necessary to
estimate the error terms for h(m, n) and H(m, n). Convergence con-
ditions are obtained in Section 3.3 based on the preliminary results of
Section 3.1 and Section 3.2. Section 3.4 provides concrete conditions for the
low degree cases r=1, 2, and 3, and a comparison is made between the
condition in Section 2 and that presented in Section 3.3. Convergence for
a more general case is discussed in Section 3.5. Finally, in Section 4 we
apply these results to rational Bernstein�Be� zier curves.

2. CONVERGENCE CONDITION FOR h(s, s) BY
TRADITIONAL TECHNIQUES

Let R(t) and hs, s(t) be defined as in (1) and (4), respectively. This section
uses the classical approach to determining the convergence of h(s, s) as
s � +�.

269CONVERGENCE OF POLYNOMIAL APPROXIMATION



File: 640J 306004 . By:XX . Date:13:05:97 . Time:08:35 LOP8M. V8.0. Page 01:01
Codes: 1479 Signs: 687 . Length: 45 pic 0 pts, 190 mm

Fig. 1. Divergence region for Theorem 1.

Theorem 1. A sufficient condition for hs, s(t) to converge to R(t)
(0�t�1) as s � +� is that none of the roots of w(t) lie within a distance
of 1

2 of any point on the line segment (0, 0)�(1, 0) in the complex plane
(see Fig. 1).

Proof. R(t) can be written

R(t)=
P(t)
w(t)

=:
k

:
l

akl

(t&zk) l , (9)

where w(zk)=0, akl are constants, and l is the multiplicity of (possibly
complex) root zk . By the reminder theorem for polynomial interpolation
(see [2]), we have

R(t)&hs, s(t)=
R(2s)(%)

(2s)!
ts(1&t)s, 0�%�1. (10)

Now we need to determine when

lim
s � +�

(R(t)&hs, s(t))=0, 0�t�1. (11)

Simple calculation shows that

R(2s)(t)=:
k

:
l

akl
(l+2s&1)!

(l&1)!
1

(t&zk) l+2s .
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Thus we only need to determine, for any fixed k, l, when

Lkl (%, t)=
(l+2s&1)!
(2s)! (l&1)! \

t(1&t)
(%&zk)2+

s 1
(%&zk) l

= `
2s&1

j=0 \1+
l&1
j+1+\

t(1&t)
(%&zk)2+

s 1
(%&zk) l � 0, as s � +�.

Denote the distance between zk and line segment (0, 0)�(1, 0) by $k . Since

`
2s&1

j=0
\1+

l&1
j+1+=O(sl&1),

} t(1&t)
(%&zk)2 }

s

�\ 1
4$2

k+
s

,

} 1
(%&zk) l }� 1

$l
k

,

convergence will occur if

$k> 1
2 . (12)

Thus a sufficient condition for the convergence is that no real or complex
root zk of Q(t) lies within a distance 1

2 of the real interval [0, 1]. This
completes the proof. K

In like manner, it can be shown that a sufficient condition for hs, 0(t) or
h0, s(t) converging to R(t) (0�t�1) as s � +� is that none of the roots
of Q(t) lie within a distance 1 of the real interval [0, 1].

3. CONVERGENCE CONDITION FOR HYBRID APPROXIMATION

In this section, we first point out the relationship between two types of
polynomial approximation, h(m, n) and H(m, n), and then derive the
approximation error terms for h(m, n) and H(m, n) and a recursive for-
mula for computing V m, n

i . Based on these preliminary results, convergence
conditions are obtained and generalization is discussed.

3.1. Remainder Terms for h(m, n) and H(m, n)

The ordinary Hermite interpolation approximation h(m, n) and hybrid
approximation H(m, n) are closely related. Their relationship is expressed
in the following theorem.

271CONVERGENCE OF POLYNOMIAL APPROXIMATION



File: 640J 306006 . By:DS . Date:23:05:97 . Time:09:34 LOP8M. V8.0. Page 01:01
Codes: 2119 Signs: 986 . Length: 45 pic 0 pts, 190 mm

Theorem 2. Let hm, n(t) and H m, n(t) be defined as in (4) and (8), respec-
tively; then

hm, n
i ={

i
m+n&1

H m&1, n&1
i&1 +\1&

i
m+n&1+ H m&1, n&1

i ,

0�i�m+n&1, i{m&1, m,
m&1

m+n&1
H m&1, n&1

m&2 +
n

m+n&1
V m&1, n&1

0 , i=m&1, (13)

m
m+n&1

V m&1, n&1
r +

n&1
m+n&1

H m&1, n&1
m , i=m,

H m, n
i =

i
m+n

hm, n
i&1+\1&

i
m+n+ hm, n

i , 0�i�m+n, i{m. (14)

That is, if we degree elevate polynomial hm, n(t), its coefficients and those of
polynomial Hm, n(t) differ only in the one coefficient H m, n

m .

Proof. The proof of (14) is omitted since it is similar to that of (13).
Noting that Bernstein polynomials are symmetric with respect to t and
1&t, we only need to prove (13) for i=0, 1, ..., m&1.

From

H� m&1, n&1(t)#R(t)

we get

d ihm, n(0)
dti =

d iH� m&1, n&1(0)
dti , i=0, 1, ..., m&1.

Expanding both sides of the above equation, we arrive at

(m+n&1)!
(m+n&1&i)!

:
i

k=0

(&1)k \ i
k+ hm, n

i&k

=
(m+n&2)!

(m+n&2&i)!
:
i

k=1

(&1)k \ i
k+ H m&1, n&1

i&k +
(m+n&2)!

(m+n&2&i)!

_{H m&1, n&1
i ,

V m&1, n&1
0 ,

0�i�m&2,
i=m&1.

(15)

Using (15), the proof can be accomplished by mathematical induction
on i. K
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To get convergence conditions for the polynomial approximations
h(m, n) and H(m, n) , it is necessary to compute the error terms of the
approximations. The following two theorems deal with that problem.

Theorem 3. The remainder term for h(m, n) is

R(t)&hm, n(t)=
V� m&1, n&1(t)

w(t)
Bm+n&2

m&1 (t) (16)

which is bounded by

|R(t)&hm, n(t)|�
wmax

Wmin

max
j=0, r

0�i�r
|V m&1, n&1

i &V m&1, n&1
j |, (17)

where V� m&1, n&1(t) is a degree r+1 Bernstein polynomial,

V� m&1, n&1(t)= :
r+1

i=0

V� m&1, n&1
i Br+1

i (t),

V� m&1, n&1
i =

i
r+1

wi&1(V m&1, n&1
i&1 &V m&1, n&1

r )+\1&
i

r+1+
_wi (V m&1, n&1

i &V m&1, n&1
0 ), i=0, 1, ..., r+1, (18)

and wmax=Max0�i�r |wi |, Wmin=Min0�t�1 |w(t)|.

Proof. Degree elevating H� m&1, n&1(t) and using relation (14), we
obtain

H� m&1, n&1(t)= :
m+n&1

i=0, i{m&1, m

hm, n
i Bm+n&1

i (t)

+\ m&1
m+n&1

H m&1, n&1
m&2 +

n
m+n&1

Vm&1, n&1(t)+
_Bm+n&1

m&1 (t)+\ m
m+n&1

Vm&1, n&1(t)

+
n&1

m+n&1
H m&1, n&1

m + Bm+n&1
m (t).
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Thus

R(t)&hm, n(t)

=H� m&1, n&1(t)&hm, n(t)

=
n

m+n&1
(Vm&1, n&1(t)&V m&1, n&1

0 ) Bm+n&1
m&1 (t)

+
m

m+n&1
(Vm&1, n&1(t)&V m&1, n&1

r ) Bm+n&1
m (t). (19)

After simplifying (19), we get (16); (17) is simply from (16) and

Max
0�t�1

|V� m&1, n&1(t)|� Max
1�i�r

|V� m&1, n&1
i |

�wmax Max
j=0, r

0�i�r
|V m&1, n&1

i &V m&1, n&1
j |. K

Theorem 4. The remainder term for H(m, n) is

R(t)&Hm, n(t)=(Vm, n(t)&H m, n
m ) Bm+n

m (t), (20)

which is bounded by

|R(t)&Hm, n(t)|�
2wmax

Wmin

Max
1�i�r

|V m, n
i &V m, n

0 |, (21)

where wmax and Wmin are defined as in Theorem 3.

Proof. Equation (20) is directly from (6) and (8); (21) can be obtained
by noting that Min0�i�r V m, n

i �H m, n
m �Max0�i�r V m, n

i . K

3.2. Recursive Formula for V m, n
i

From Theorems 3 and 4, we see that the key to obtaining convergence
conditions is to estimate V m, n

i &V m, n
0 . This section derives the recursive

formula for computing V m, n
i &V m, n

0 .

Theorem 5. V m, n
i &V m, n

0 has the recursive formula

\
V m+1, n

1 &V m+1, n
0

b
V m+1, n

r &V m+1, n
0

+=
m+1

m+n+1
W 10

r \
V m, n

1 &V m, n
0

b
V m, n

r &V m, n
0
+ (22)
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\
V m, n+1

1 &V m, n+1
0

b
V m, n+1

r &V m, n+1
0

+=
n+1

m+n+1
W 01

r \
V m, n

1 &V m, n
0

b
V m, n

r &V m, n
0
+ (23)

\
V m+1, n+1

1 &V m+1, n+1
0

b
V m+1, n+1

r &V m+1, n+1
0

+

=
2(m+1)(n+1)

(m+n+2)(m+n+1)
W 11

r \
V m, n

1 &V m, n
0

b
V m, n

r &V m, n
0
+ , m, n=0, 1, 2, ..., (24)

where

W 10
1 =1&g0 ,

W 10
r =\

1&g0 g1 0 0 } } } 0 0

+ , (25)

&g0 1 g2 0 } } } 0 0
&g0 0 1 g3 } } } 0 0

b b b b b b b
&g0 0 0 0 } } } 1 gr&1

&g0 0 0 0 } } } 0 1

W 01
1 =1&

1
g0

,

W 01
r =

1 0 0 0 } } } 0 &
1

gr&1

, (26)

1
g0

1 0 0 } } } 0 &
1

gr&1

0
1
g1

1 0 } } } 0 &
1

gr&1

b b b b b b b

0 0 0 0 } } } 1 &
1

gr&1

0 0 0 0 } } }
1

gr&2

1&
1

gr&1
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W 11
1 =

1
2 \2&g0&

1
g0+ ,

W 11
r =

1
2

2&g0 g1 0 } } } 0 0 &
1
g0

, (27)

1
g1

&g0 2 g2 } } } 0 0 &
1
g1

&g0

1
g2

2 } } } 0 0 &
1
g2

b b b b b b b

&g0 0 0 } } } 2 gr&2 &
1

gr&3

&g0 0 0 } } }
1

gr&2

2 gr&1&
1

gr&2

&g0 0 0 } } } 0
1

gr&1

2&
1

gr&1

gi=
(r&i ) wi+1

(i+1) wi
, i=0, 1, ..., r&1. (28)

Proof. We only prove (25), the others are similar.

First, we represent Vm, n(t) as a hybrid polynomial of degree one,

Vm, n(t)=V m, n
0 B1

0(t)+V� 1
0(t) B1

1(t), (29)

where V� 1
0(t) is the variable coefficient.

By degree elevation, we have

H� m, n(t)= :
m+n+1

i=0, i{m, m+1
\ i

m+n+1
H m, n

i&1

+\1&
i

m+n+1+ H m, n
i + Bm+n+1

i (t)

+
m

m+n+1
H m, n

m&1Bm+n+1
m (t)+

n
m+n+1

H m, n
m+1Bm+n+1

m+1 (t)

+
n+1

m+n+1
V m, n

0 Bm+n+1
m (t)+

m+1
m+n+1

V� 1
0(t) Bm+n+1

m+1 (t). (30)
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From the identity

H� m, n(t)#H� m+1, n(t)= :
m+n+1

i=0, i{m+1

H m+1, n
i Bm+n+1

i (t)+V m+1, n(t) Bm+n+1
m+1 ,

(31)

we get

Vm+1, n=
m+1

m+n+1
V� 1

0(t)+
n

m+n+1
H m, n

m+1

=
m+1

m+n+1
V m, n(t)&V m, n

0 (1&t)
t

+
n

m+n+1
H m, n

m+1 (32)

and, hence,

V m+1, n
i =

m+1
m+n+1

(V m, n
0 +(V m, n

i &V m, n
0 )+gi (V m, n

i+1&V m, n
0 ))

+
n

m+n+1
H m, n

m+1 (i=0, 1, ..., #; g#=0). (33)

Now (25) can be obtained from (32). K

3.3. Convergence Conditions for h(s, s) and H(s, s)

In this section, we take special interest in the Hermite interpolation case
m=n=s and derive the convergence condition for h(s, s) and H(s, s).

From the remainder terms in Theorems 3 and 4, we know the con-
vergence condition depends on the magnitude of V s, s

i &V s, s
0 . If

lim
s � �

(V s, s
i &V s, s

0 )=0, i=1, 2, ..., r; (34)

then hs, s(t) and Hs, s(t) must converge to R(t) uniformly on [0, 1].
Using recursive formula (24), we now get the concrete condition for the

convergence of h(s, s) and H(s, s).

Theorem 6. Let W 11
r be as defined in (27) and let *1 , *2 , ..., *r be the

eigenvalues (not necessarily distinct) of matrix W 11
r . Then

|*i |<2, i=1, 2, ..., r, (35)

is a sufficient condition for hs, s(t) and Hs, s(t) converging to R(t). Especially,
for r=1, the condition is also necessary.
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Proof. By recursive formula (24) and noting that H� 0, 0(t)#V 0, 0(t)#
R(t), we have

{
V s, s

1 &V s, s
0

b
V s, s

r &V s, s
0
==

s !
(2s&1)!!

(W 11
r )s {

R1&R0

b
Rr&R0

= . (36)

Let W 11
r =Q11

r J 11
r (Q11

r )&1, where J 11
r is the Jordan canonical form [3, 6]

of matrix W 11
r and Q11

r is an r_r invertible matrix. By the Stirling formula
[4], we know

s !
(2s&1)!!

=
2ss !2

(2s)!
=O \- s

2s + . (37)

Since

lim
s � �

- s
2s (J 11

r )s=0 (38)

if and only if |*i |<2, i=1, 2, ..., r, by (36), the sufficiency is proved.
In the case of r=1, the eigenvalue of matrix W 11

1 is *1= 1
2 (2& g0&1�g0)

and the remainder term for h(s, s) is

R(t)&hs, s(t)=
(w1&w0) B2

1(t)
2w(t)

} (V s&1, s&1
1 &V s&1, s&1

0 ) B2s&2
s&1 (t)

=
(w1&w0)(R1&R0) B2

1(t)
2w(t)

}
*s&1

1 (s&1)!
(2s&3)!!

B2s&2
s&1 (t). (39)

We assume (w1&w0)(R1&R0){0 which means R(t) is not a polynomial.
Noting (37) and

Max
0�t�1

B2s&2
s&1 (t)=O \ 1

- s+ ,

we see hs, s(t) converges to R(t) if and only if

|*1 |<2. (40)

Thus the condition is also necessary.
Similarly, we can prove for H(s, s) that the condition is also

necessary. K

By combining the result of the special case r=1 and traditional techni-
ques, we can obtain a much more interesting result.
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Fig. 2. Divergence region for Theorem 7.

Theorem 7. hm, n(t) and Hm, n(t) converge to R(t) if and only if all the
roots zi of polynomial w(t) satisfy

|zi (1&zi)|>1�4; (41)

i.e., the roots all lie on the outside of the region D=[z # C : |z(1&z)|� 1
4]

as depicted in Fig. 2.

Proof. Let us first prove the simplest case, r=1. In this case,
z0=w0 �(w0&w1) and W 11

1 =1�2z0(1&z0); (41) follows immediately from
Theorem 6.

For the general case, we write R(t) as in (9). If the roots of w(t) are all
simple (multiplicity 1), by (39), the remainder term for approximation
h(s, s) is

R(t)&hs, s(t)=:
k

ak

|k(t) \
1

2zk(1&zk)+
s&1 (s&1)!

(2s&3)!!
B2

1(t) B2s&2
s&1 (t). (42)

Thus hs, s(t) � R(t) if and only if (41) holds.
If w(t) contains multiple roots, the proof is much more tedious but still

can be done by computing the error term and estimating it. The details are
omitted. K

If D0 denotes the shaded region in Fig. 1, it is easy to see D/D0 . Thus
condition (41) relaxes the condition obtained by the traditional method.

3.4. Convergence Criteria for h(s, s) and H(s, s) of degree 1, 2, and 3

This section looks in detail at the convergence of h(s, s) and H(s, s)
for rational Bernstein polynomials of degree r=1, 2, and 3. It is shown that
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the sufficient condition from Section 2 is more restrictive than the condi-
tion in Section 3.3.

For r=1, from Section 3.3 it is seen that h(s, s) and H(s, s) uniformly
converge to R(t) if and only if

3&2 - 2<
w1

w0

<3+2 - 2. (43)

Note that the condition obtained from Section 2 is

1
3

<
w1

w0

<3. (44)

Before considering the cases r=2 and 3, we need the following lemmas.

3.4.1. Lemmas

Lemma 1. The necessary and sufficient condition for all the roots of poly-
nomial f (t) satisfying

|t|<c (c>0)

is that the real parts of all the roots of the polynomial

(1+u)d f \1&u
1+u

c+
are positive, where d is the degree of f (t).

Proof. The roots of f (t) satisfying |t|<c is equivalent to the roots of
f (ct) satisfying |t|<1. Note that the transformation

u=
1&t
1+t

or t=
1&u
1+u

maps the inside (outside) of the unit circle onto the positive (negative) half
complex plane, and the lemma is proved. K

Lemma 2. The necessary and sufficient condition for the real parts of all
roots of the polynomial

pd (u)= :
d

i=0

pdiui, pdd>0, d=1, 2, 3
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to be positive is that

v d=1, 2; (&1)d&i pdi>0, 0�i�d&1;

v d=3; (&1)3&i p3i>0, i=0, 1, 2, and p30 p33& p31 p32>0.

Proof. We prove the case d=3 only. Let u1 , u2 and u3 be the three
roots of p3(u) and let

U1=u1+u2+u3 , U2=u1 u2+u2 u3+u3 u1 ,

U3=u1u2u3 , U4=(u1+u2)(u1+u3)(u2+u3).

We claim the necessary and sufficient condition for Re(ui)>0, i=1, 2, 3,
is

Ui>0, i=1, 2, 3, 4.

Since necessity is easy to prove, we only prove sufficiency.
If the roots of p3(u) are all real, from Ui>0, i=1, 2, 3, 4, we see ui must

be positive for i=1, 2, 3. If there exist a pair of complex roots, say
u1=a+bi, u2=a&bi, and u3=c, then

U1=2a+c, U2=a2+b2+2ac, U3=(a2+b2) c,

U4=2a((a+c)2+b2).

From Ui>0, i=1, 2, 3, 4, we obtain a>0 and c>0. This proves
sufficiency.

Finally, since (see [1])

p3i=(&1)3&i U3&i p33 (i=0, 1, 2), U4=U1 U2&U3 ,

the lemma is confirmed. K

From Lemma 1 and Lemma 2, we immediately get

Lemma 3. Let udi , i=1, 2, ..., d, be the roots of polynomial

pd (u)= :
d

i=0

pdiui, pdd=1, d=1, 2, 3.

Then |udi |<2, i=1, 2, ..., d, if and only if

v d=1, | p10 |<2;

v d=2, | p20 |<4, |2p21 |<p20+4;
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v d=3, &4<p31<12, | p30+4p32 |<2p31+8,

|3p30&4p32 |<24&2p31 , (4p32& p30) p30>16( p31&4).

Proof. By Lemma 1, |udi |<2, i=1, 2, ..., d, hold if and only if the real
parts of all the roots of the polynomial

hd (u)= :
d

i=0

2 ipdi (1&u) i (1+u)d&i

are positive. By Lemma 2, Lemma 3 is proved. K

3.4.2. Convergence Condition for Degree 2 Case

Theorem 8. Let R(t) be a quadratic rational function as defined in (1)
and let

!=w1 �w0 ,
(45)

'=w1 �w2 .

Then h(s, s) and H(s, s) are uniformly convergent if

} (1&!)(1&')+
(!&')2

4!' }<4, (46)

|2(!+'&2)|<4+(1&!)(1&')+
(!&')2

4!'
; (47)

i.e., (!,') # 0 in the !�' plane as depicted in Fig. 3. Moreover, the conver-
gence condition in Theorem 1 is equivalent to requiring that (!, ') be in the
shaded region 00 .

Proof. Since

W 11
2 =\1&!

1
4 \

1
'

&
1
!++ ,

'&! 1&'

we can obtain the characteristic equation of the matrix W 11
2 ,

|*I&W 11
2 |=*2&v*+e=0,
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Fig. 3. Convergence region for degree two rational functions.

where

v=2&!&',

e=(1&!)(1&')+
(!&')2

4!'
.

The theorem follows from Lemma 3. K

Noting that 00/0, we see that the convergence condition from
Theorem 1 is more restrictive than the one obtained by the new method.

3.4.3. Convergence Condition for Degree 3 Case

To get the convergence condition for cubic rational functions, we first
compute the characteristic equation of the matrix W 11

3 ,

|*I&W 11
3 |=*3+a*2+b*+c=0, (48)

where

a=(&6w0w3+3w0w2+3w1w3)�2w0w3 ,

b=(9w0w3&12w0w2+3w1w0&12w1 w3+9w1w2+3w2 w3)�4w0w3 ,

c=(&6w2w3+6w1w3&18w1w2&2w0w3+6w0w2+9w2
1

+w2
0+9w2

2+w2
3&6w1 w0)�8w0 w3 . (49)
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From Lemma 3, we immediately arrive at

Theorem 9. Let R(t) be a cubic rational function as defined in (1). Then
hs, s(t) and Hs, s(t) converge to R(t) as s � � if

&4<b<12, |4a+c|<2b+8, |4a&3c|<24&2b,

16(4&b)>(c&4a) c, (50)

where a, b, c are defined in (49).

In the following, we give an example to demonstrate this.

Example 1. Let w0=1, w1=2, w2=3, w3=2. It is easy to compute

a= 9
4, b= 3

2 , c= 1
4 ,

and (50) holds. Thus the approximation is convergent.

3.5. Convergence Condition for h(s, 0) and H(s, 0)

By taking a similar approach, we can get the convergence condition for
approximations h(s, 0) (or h(0, s) ) and H(s, 0) (or H(0, s) ).

Theorem 10. Let * jk
i , i=1, 2, ..., r be the eigenvalues of matrix W jk

r

(defined in (25) and (26)), jk=10 or 01. If |*10
i |<1 ( |*01

i |<1), i=1, 2, ..., r,
then hs, 0(t)(h0, s(t)) and H s, 0(t)(H0, s(t)) converge to R(t).

Proof. Similar to the proof of Theorem 6. K

For low degree cases r=1, 2, and 3, we can also get concrete conditions.
The detailed discussion is omitted.

3.6. General Case

The above results obtained in the cases m=n=s and m=0 (or n=0)
can be extended to the more general case limn � +�(m�n)=: (:�0). We
only illustrate the case :=2 briefly.

Proceeding as before, we can get the recursive formula

\
V a+2s, s

1 &V a+2s, s
0

b
V a+2s, s

r &V a+2s, s
0

+
=

(a+2s)! s! 3s

(a+3s)!
(W 21

r )s \
V a, 0

1 &V a, 0
0

b
V a, 0

r &V a, 0
0
+ , a, s=0, 1, ..., (51)
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where

W 21
r =

1
3

3&g0(3&g0+g1) g1(3&g0) g1 g2 } } } 0 0 &
1
g0

.

1
g1

& g0(3& g0+ g2) 3& g0 g1 3g2 } } } 0 0 &
1
g1

&g0(3& g0+ g3)
1
g2

& g0 g1 3 } } } 0 0 &
1
g2

&g0(3& g0+ g4) &g0 g1

1
g3

} } } 0 0 &
1
g3

b b b b b b b

&g0(3& g0+ gr&3) &g0 g1 0 } } } 3gr&3 gr&3 gr&2 &
1

gr&4

&g0(3& g0+ gr&2) &g0 g1 0 } } } 3 3gr&2 gr&2 gr&1&
1

gr&3

&g0(3& g0+ gr&1) &g0 g1 0 } } }
1

gr&2

3 3gr&1&
1

gr&2

&g0(3& g0) &g0 g1 0 } } } 0
1

gr&1

3&
1

gr&1

(52)

Since

(a+2s)! s !
(a+3s)!

t
2a+1

3a+1�2

- ?s 22s

33s as s � +�,

by Theorem 3, we obtain

Theorem 11. Let *21
i (i=1, 2, ..., r) be the eigenvalues of the matrix

W 21
r . If

|*21
i |< 9

4 , i=1, 2, ..., r, (53)

then the approximations h(a+2s, s) and H(a+2s, s) converge to R(t).

4. CONVERGENCE OF RATIONAL CURVES

A rational Bernstein�Bez� ier curve is defined by

R(t)=
�r

i=0 wiRi Br
i (t)

�r
i=0 wiBr

i (t)
, 0�t�1, (54)
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where Ri # R 3 are control points, and B r
i (t) and wi � 0 are defined as

in (1).
As in the function case, we can define two types of polynomial

approximation of rational curves h(m, n) and H(m, n) as in (4) and (8),
respectively. The only difference is that the coefficients are replaced by
points in R3. The main results obtained in the previous sections are still
valid for curves. Most importantly, we have

Theorem 12. Let W 11
r , and *i be the same as in Theorem 6. Then

|*i |<2, i=1, 2, ..., r, (55)

is a sufficient condition for h(s, s) and H(s, s) converging to R(t). Further-
more, for r=1, the condition is necessary and sufficient. Also, if the r vectors
[Ri&R0]r

i=1 are linearly independent, r=2, 3, ..., then the condition is
necessary and sufficient.

Figure 4 illustrates the hybrid curves of a cubic rational curve which
converge to the cubic curve while Fig. 5 demonstrates divergent hybrid
curves.

One difference between functions and curves we should mention here is
that the same curve can be reparametrized using a different parameter; i.e.,
it can have different functional representations. Thus the approximation for

Fig. 4. Convergent hybrid curves.
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Fig. 5. Divergent hybrid curves.

curves can be a little different from that for functions. For example, any
degree-1 rational curve can be reparameterized so that the polynomial
approximation is always convergent. For quadratic curves we have the
following result.

Theorem 13. Let R(t) be a quadratic rational Bernstein�Be� zier curve as
defined in (54). Let !, ', and 0 be as in Theorem 8. If (!, ') � 0, but
!'=w2

1 �w0 w2<9, then R(t) can be reparameterized so that the approxima-
tions h(s, s) and H(s, s) are convergent.

Proof. Obviously, there exists a point (!0 , '0) # 0 such that !0'0=
w2

1 �w0w2<9. If we make the rational linear parameter transformation

t=
'u

'0(1&u)+'u
, (56)

then the curve R(t) becomes

R� (u)=
'0R0(1&u)2+!0'0R1 } 2(1&u) u+!0R2 } u2

'0(1&u)2+!0 '0 } 2(1&u) u+!0 } u2 , 0�u�1. (57)

That means the curve itself is not changed, but it has a different parameter
u and different weights ('0 , !0 '0 , !0). But since (!0 , '0) # 0, by Theorem 8,
approximations h(s, s) and H(s, s) converge to R� (u). This completes the
proof. K

5. CONCLUSION

Based on the notion of hybrid polynomials, we have derived necessary
and sufficient convergence criteria for various polynomial approximations
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of rational functions and rational curves. These conditions are better than
those obtained using traditional methods.

Further study is needed to determine if the condition obtained in
Theorem 6 is necessary and its relation to the necessary and sufficient con-
dition obtained in Theorem 7. Also, experience suggests that convergence
speed is related to eigenvalue magnitudes. This warrants closer study.
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